What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and T(22, 8)? Round to the nearest hundredth, if necessary. units

Accepted Solution

Answer:The perimeter is 38.25 unitsStep-by-step explanation:The perimeter of the tra-pezoid is the distance around it.The length of the bases can be found using the absolute value method.|RS|=|20-14|=6 units.|TQ|=|22-8|=14Recall the distance formula;[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]We use the distance to find the non parallel sides.[tex]|ST|=\sqrt{(20-22)^2+(16-8)^2} =8.25[/tex] units.and[tex]|QR|=\sqrt{(8-14)^2+(16-8)^2} =10[/tex] units.The perimeter of the tra-pezoid is =14+10+6+8.25=38.25